我们提出了一个新颖的框架,以研究异步联合学习优化,并在梯度更新中延迟。我们的理论框架通过引入随机聚合权重来表示客户更新时间的可变性,从而扩展了标准的FedAvg聚合方案,例如异质硬件功能。我们的形式主义适用于客户具有异质数据集并至少执行随机梯度下降(SGD)的一步。我们证明了这种方案的收敛性,并为相关最小值提供了足够的条件,使其成为联邦问题的最佳选择。我们表明,我们的一般框架适用于现有的优化方案,包括集中学习,FedAvg,异步FedAvg和FedBuff。这里提供的理论允许绘制有意义的指南,以设计在异质条件下的联合学习实验。特别是,我们在这项工作中开发了FedFix,这是FedAvg的新型扩展,从而实现了有效的异步联合训练,同时保留了同步聚合的收敛稳定性。我们在一系列实验上凭经验证明了我们的理论,表明异步FedAvg以稳定性为代价导致快速收敛,我们最终证明了FedFix比同步和异步FedAvg的改善。
translated by 谷歌翻译
图像注册是医学成像应用中的关键任务,可以在常见的空间参考框架中表示医学图像。当前有关图像注册的文献通常基于以下假设:研究人员通常可以访问图像,随后可以估算空间转换。在当前的实际应用中可能无法满足这种共同的假设,因为医学图像的敏感性最终可能需要在隐私限制下进行分析,从而阻止以清晰的形式共享图像内容。在这项工作中,我们在保存隐私制度下制定了图像注册的问题,其中假定图像是机密的,不能清楚地披露。我们通过扩展经典的注册范例来说明高级加密工具(例如安全的多方计算和同派加密)来确定图像注册框架的隐私保护框架,从而使操作执行而无需泄漏基础数据。为了克服高维度中加密工具的性能和可扩展性问题,我们首先建议使用梯度近似值优化基础图像注册操作。我们进一步重新审视了同态加密的使用,并使用包装方法可以更有效地对大型矩阵进行加密和乘法。我们证明了我们在线性和非线性注册问题中保存隐私框架,并评估其相对于标准图像注册的准确性和可扩展性。我们的结果表明,保留图像注册的隐私是可行的,可以在敏感的医学成像应用中采用。
translated by 谷歌翻译
虽然客户的采样是当前最先进的联邦学习(FL)方法的核心运营,但该程序对迄今为止的迄今为止迄今为止的收敛和速度的影响。在这项工作中,我们为FL的收敛介绍了一种新颖的分解定理,允许清楚地量化客户对全局模型更新的影响。与之前的收敛分析相反,我们的定理提供了给定的收敛步骤的精确分解,从而能够准确考虑客户端采样和异质性的作用。首先,我们为先前报告的结果提供了一种理论基础,从收敛性与聚集权重之间的关系之间的关系。其次,我们首次证明了FL收敛的质量也受到聚集重量之间产生的协方差的影响。第三,我们建立了聚集权重的总和是另一个减速的来源,应该等于1来提高流动速度。我们的理论是一般性的,这里申请了多项分布(MD)和统一采样,在FL中的两个默认客户端采样,并通过一系列非IID和不平衡情景进行了演示。我们的结果表明,MD采样应用作默认采样方案,因为在学习过程中的数据比变化的恢复,而统一的采样仅在客户端具有相同数量的数据时才是优越的。
translated by 谷歌翻译
Computational units in artificial neural networks follow a simplified model of biological neurons. In the biological model, the output signal of a neuron runs down the axon, splits following the many branches at its end, and passes identically to all the downward neurons of the network. Each of the downward neurons will use their copy of this signal as one of many inputs dendrites, integrate them all and fire an output, if above some threshold. In the artificial neural network, this translates to the fact that the nonlinear filtering of the signal is performed in the upward neuron, meaning that in practice the same activation is shared between all the downward neurons that use that signal as their input. Dendrites thus play a passive role. We propose a slightly more complex model for the biological neuron, where dendrites play an active role: the activation in the output of the upward neuron becomes optional, and instead the signals going through each dendrite undergo independent nonlinear filterings, before the linear combination. We implement this new model into a ReLU computational unit and discuss its biological plausibility. We compare this new computational unit with the standard one and describe it from a geometrical point of view. We provide a Keras implementation of this unit into fully connected and convolutional layers and estimate their FLOPs and weights change. We then use these layers in ResNet architectures on CIFAR-10, CIFAR-100, Imagenette, and Imagewoof, obtaining performance improvements over standard ResNets up to 1.73%. Finally, we prove a universal representation theorem for continuous functions on compact sets and show that this new unit has more representational power than its standard counterpart.
translated by 谷歌翻译
The open-radio access network (O-RAN) embraces cloudification and network function virtualization for base-band function processing by dis-aggregated radio units (RUs), distributed units (DUs), and centralized units (CUs). These enable the cloud-RAN vision in full, where multiple mobile network operators (MNOs) can install their proprietary or open RUs, but lease on-demand computational resources for DU-CU functions from commonly available open-clouds via open x-haul interfaces. In this paper, we propose and compare the performances of min-max fairness and Vickrey-Clarke-Groves (VCG) auction-based x-haul and DU-CU resource allocation mechanisms to create a multi-tenant O-RAN ecosystem that is sustainable for small, medium, and large MNOs. The min-max fair approach minimizes the maximum OPEX of RUs through cost-sharing proportional to their demands, whereas the VCG auction-based approach minimizes the total OPEX for all resources utilized while extracting truthful demands from RUs. We consider time-wavelength division multiplexed (TWDM) passive optical network (PON)-based x-haul interfaces where PON virtualization technique is used to flexibly provide optical connections among RUs and edge-clouds at macro-cell RU locations as well as open-clouds at the central office locations. Moreover, we design efficient heuristics that yield significantly better economic efficiency and network resource utilization than conventional greedy resource allocation algorithms and reinforcement learning-based algorithms.
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.
translated by 谷歌翻译
Profile extrusion is a continuous production process for manufacturing plastic profiles from molten polymer. Especially interesting is the design of the die, through which the melt is pressed to attain the desired shape. However, due to an inhomogeneous velocity distribution at the die exit or residual stresses inside the extrudate, the final shape of the manufactured part often deviates from the desired one. To avoid these deviations, the shape of the die can be computationally optimized, which has already been investigated in the literature using classical optimization approaches. A new approach in the field of shape optimization is the utilization of Reinforcement Learning (RL) as a learning-based optimization algorithm. RL is based on trial-and-error interactions of an agent with an environment. For each action, the agent is rewarded and informed about the subsequent state of the environment. While not necessarily superior to classical, e.g., gradient-based or evolutionary, optimization algorithms for one single problem, RL techniques are expected to perform especially well when similar optimization tasks are repeated since the agent learns a more general strategy for generating optimal shapes instead of concentrating on just one single problem. In this work, we investigate this approach by applying it to two 2D test cases. The flow-channel geometry can be modified by the RL agent using so-called Free-Form Deformation, a method where the computational mesh is embedded into a transformation spline, which is then manipulated based on the control-point positions. In particular, we investigate the impact of utilizing different agents on the training progress and the potential of wall time saving by utilizing multiple environments during training.
translated by 谷歌翻译
The recent emergence of new algorithms for permuting models into functionally equivalent regions of the solution space has shed some light on the complexity of error surfaces, and some promising properties like mode connectivity. However, finding the right permutation is challenging, and current optimization techniques are not differentiable, which makes it difficult to integrate into a gradient-based optimization, and often leads to sub-optimal solutions. In this paper, we propose a Sinkhorn re-basin network with the ability to obtain the transportation plan that better suits a given objective. Unlike the current state-of-art, our method is differentiable and, therefore, easy to adapt to any task within the deep learning domain. Furthermore, we show the advantage of our re-basin method by proposing a new cost function that allows performing incremental learning by exploiting the linear mode connectivity property. The benefit of our method is compared against similar approaches from the literature, under several conditions for both optimal transport finding and linear mode connectivity. The effectiveness of our continual learning method based on re-basin is also shown for several common benchmark datasets, providing experimental results that are competitive with state-of-art results from the literature.
translated by 谷歌翻译
Digital media have enabled the access to unprecedented literary knowledge. Authors, readers, and scholars are now able to discover and share an increasing amount of information about books and their authors. Notwithstanding, digital archives are still unbalanced: writers from non-Western countries are less represented, and such a condition leads to the perpetration of old forms of discrimination. In this paper, we present the Under-Represented Writers Knowledge Graph (URW-KG), a resource designed to explore and possibly amend this lack of representation by gathering and mapping information about works and authors from Wikidata and three other sources: Open Library, Goodreads, and Google Books. The experiments based on KG embeddings showed that the integrated information encoded in the graph allows scholars and users to be more easily exposed to non-Western literary works and authors with respect to Wikidata alone. This opens to the development of fairer and effective tools for author discovery and exploration.
translated by 谷歌翻译